Predicting environmental health hazards in cities using images

Ricky Nathvani On behalf of the Pathways Collaboration Imperial College London University of Ghana

PRESENTATION CONTAINS UNPUBLISHED DATA - DO NOT COPY OR DISTRIBUTE

www.equitablehealthycities.org

Urban environmental health: a visual perspective

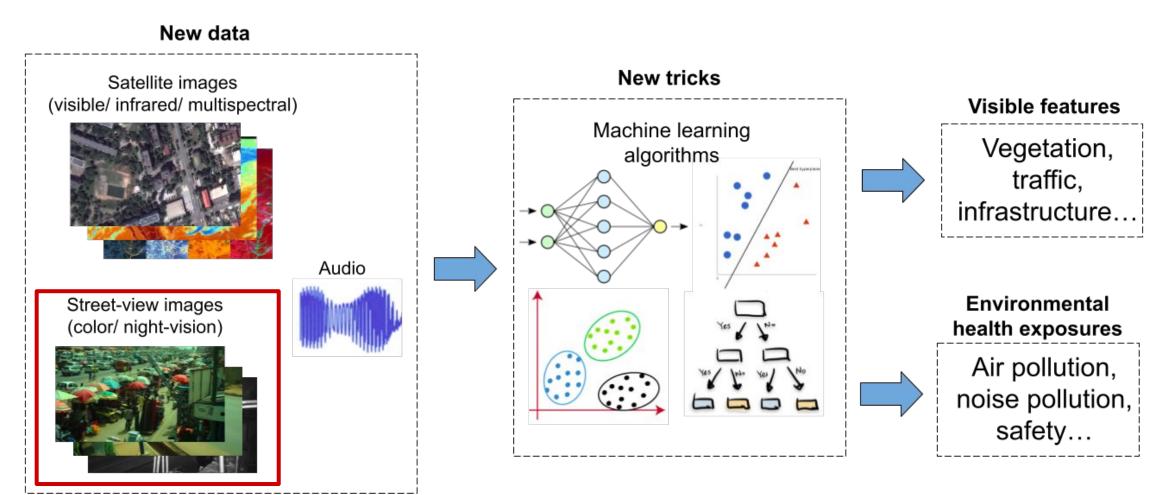
Many features of environmental health are locally visible in nature

Inequality

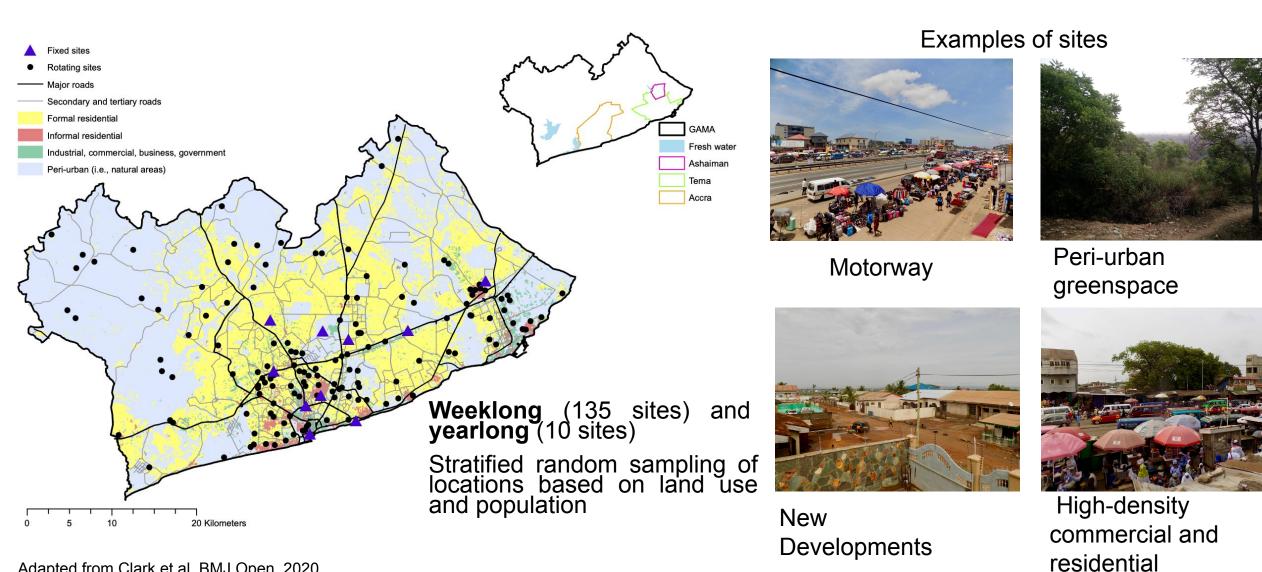
Pollution, walkability, safety

New data; New tricks

Collecting actual environmental measurements is resource intensive relative to images



Measurement campaign (April 2019 – June 2020)



Adapted from Clark et al. BMJ Open. 2020

Sound levels (noise)

- PM_{2.5} and NO₂ (air pollution)
- Street-view imagery

 Day and night
- Audio
- Meteorology

scientific reports

Camera

ENVIRONMENTAL RESEARCH LETTERS

LETTER

Spatial-temporal patterns of ambient fine particulate matter (PM_{2.5}) and black carbon (BC) pollution in Accra

Abosede S Alli¹, Sierra N Clark^{2,1}⁽²⁾, Allison Hughes¹⁽²⁾, James Nimo⁴, Josephine Bedford-Moses⁴, Solomon Baah⁴, Jiayuan Wang¹, Jose Vallarino³, Ernest Agyemang⁶, Benjamin Barratt^{4,2}, Andrew Beddows^{1,2}, Frank Kelly^{1,2}, George Owusu⁴, Jill Baumgartner^{5,4}, Michael Brauer^{10,11}, Majid Ezzati^{2,3,12}, Samuel Agyei-Mensah⁶ and Raphael E Arku^{1,4}⁽²⁾

OPEN Space-time characterization of community noise and sound sources in Accra, Ghana

Sierra N. Clark^{1,2}, Abosede S. Alli³, Ricky Nathvani^{1,2}, Allison Hughes⁴, Majid Ezzati^{1,2,5,6}, Michael Brauer⁷, Mireille B. Toledano^{1,2,8}, Jill Baumgartner^{9,10}, James E. Bennett^{1,2}, James Nimo⁴, Josephine Bedford Moses⁴, Solomon Baah⁴, Samuel Agyei-Mensah¹¹, George Owusu¹², Briony Croft¹³ & Raphael E. Arku³

Urban data capture

Spatiotemporal variation in noise and air pollution in Accra

Noise

Space-time characterization of community noise and sound sources in

Median LAeg24hr (dBA)

0 [52, 57)

0 [57, 61)

0 [61, 66)

● [66, 70) ● [70, 75]

1.00

0.75

0.50 0.25 0.00

1.00 **6** 0.75 0.50 0.25

Distribu

0.75

an 0.50

J 0.25

0.00

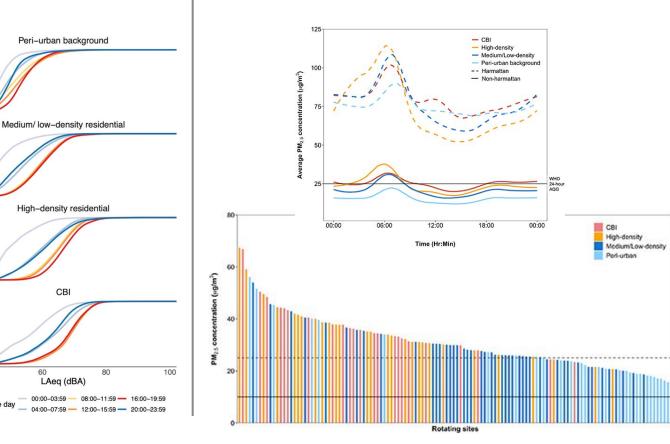
1.00 0.75 0.50 0.25 0.0

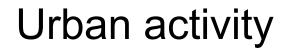
Time of the day

Accra, Ghana - S. N. Clark et al

Air pollution (PM_{2.5}) Spatial-temporal patterns of ambient fine particulate matter (PM_{2.5}) and black

carbon (BC) pollution in Accra - A. S. Alli et al

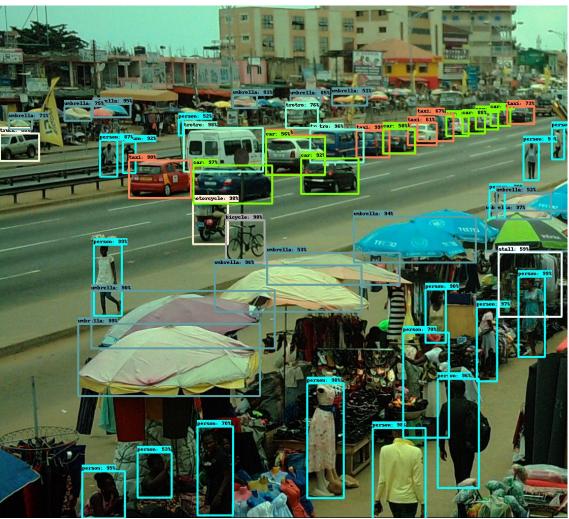




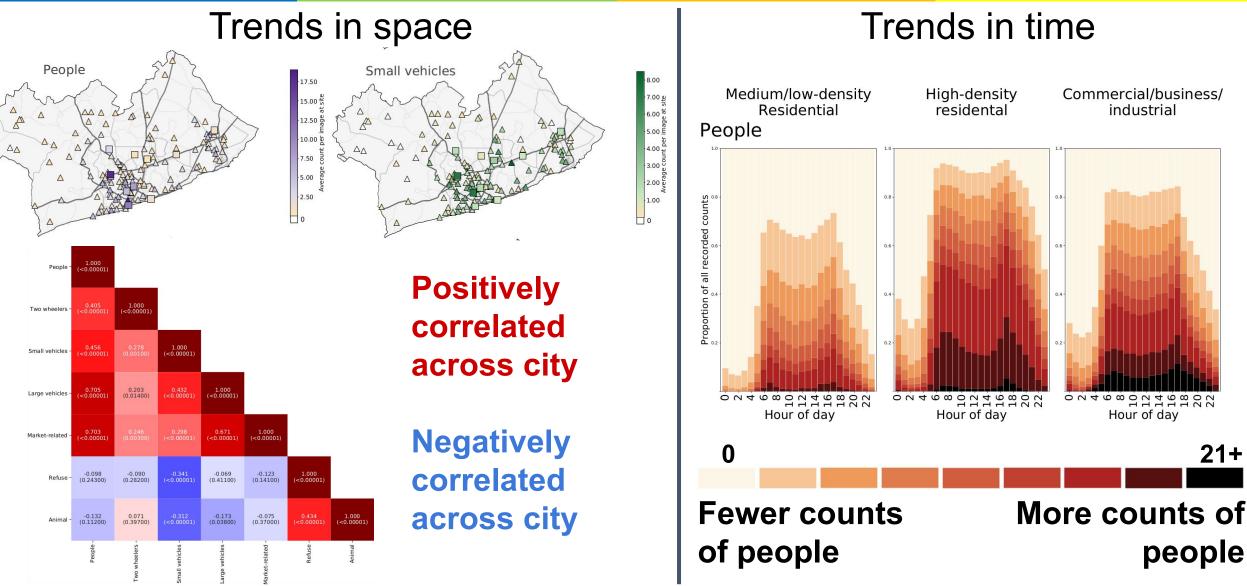
Changes in environmental features (traffic-related noise)

Changes in features (objects)

- Identified 238 features relevant to environmental health.
- Shortlisted 20 objects from frequency, usefulness and uniqueness.
- Final object categories: Person, street vendor, car, truck, taxi, market stall, cookstove, loudspeaker, umbrella, cooking bowl, food, motorcycle, bicycle, trash, debris, bus, lorry, van, tro tro and animal.
- Label 1,000 sample images → **train CNN** to detect objects in 2.1 million images.
- Environmental change across time and space.



Urban activity and environment in Accra



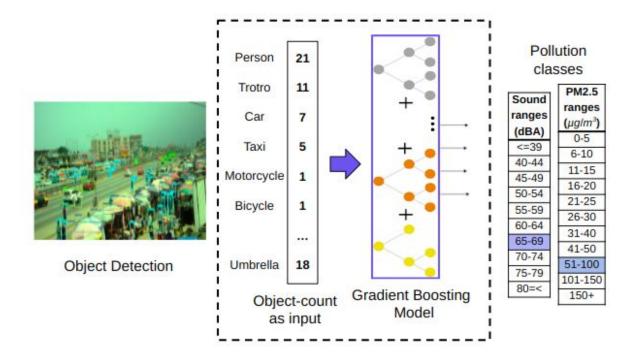
Pollution

Pollution linked to changes in visibility

Hazy: high PM_{2.5}

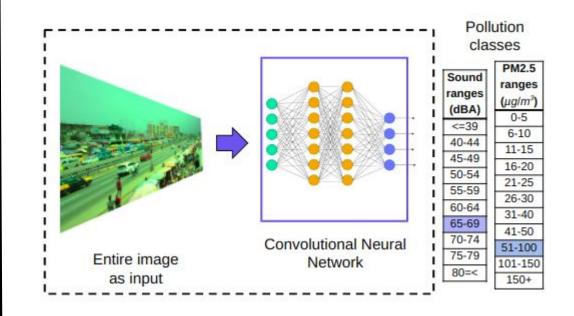
Modeling noise & air (PM_{2.5}) levels from images

Approach 1: Feature driven



- Features extracted manually
- Subsequently, feature count used for modeling

Approach 2: Outcome driven



- No prior assumptions made on features
- Entire image used for modeling

How well can such models generalise?

Robustness across time:

Models trained at same location at different **times** - long term sites (~1 year)

Question 1a: How well do models trained at a **single** site perform at unseen times at the **same** site? (Temporal generalisability)

Experiment 1	Asylum Down (AD)	AD
Experiment 2	Ashaiman (Ash)	Ash
Experiment 3	East Legon (EL)	EL
Experiment 4	Jamestown (JT)	JT
Experiment 5	Labadi (La)	La
Experiment 6	N1 West Motorway (N1)	N1
Experiment 7	Nima	Nima
Experiment 8	Taifa	Taifa
Experiment 9	Tema Motorway (TMW)	TMW
Experiment 10	University of Ghana (UGH)	UGH

Training set (90% random sample of images at site) Testing set (remaining 10% sample of images at site) Combined model and evaluation

Robustness across space:

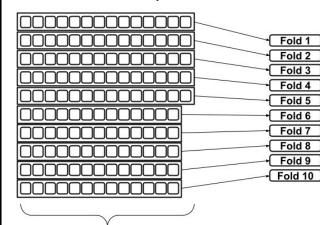
Models trained & evaluated at different **locations** - short term sites (~1 week each)

Question 2b: How well do models trained on **multiple**, short term sites perform at **multiple** unseen sites? (Spatial generalisability)

10- Fold Cross Validation Experiment 1 | Experiment 2 Experiment 10 Fold 1 Fold 1 Fold 1 Fold 2 Fold 2 Fold 2 Fold 3 Fold 3 Fold 3 Fold 4 Fold 4 Fold 4 Fold 5 Fold 5 Fold 5 ... Fold 6 Fold 6 Fold 6 Fold 7 Fold 7 Fold 7 Fold 8 Fold 8 Fold 8 Fold 9 Fold 9 Fold 9 Fold 10 Fold 10 Fold 10

Training sets (Fold of all images at 13-14 sites) Testing set (Fold of all images at 13-14 sites) Combined model and evaluation

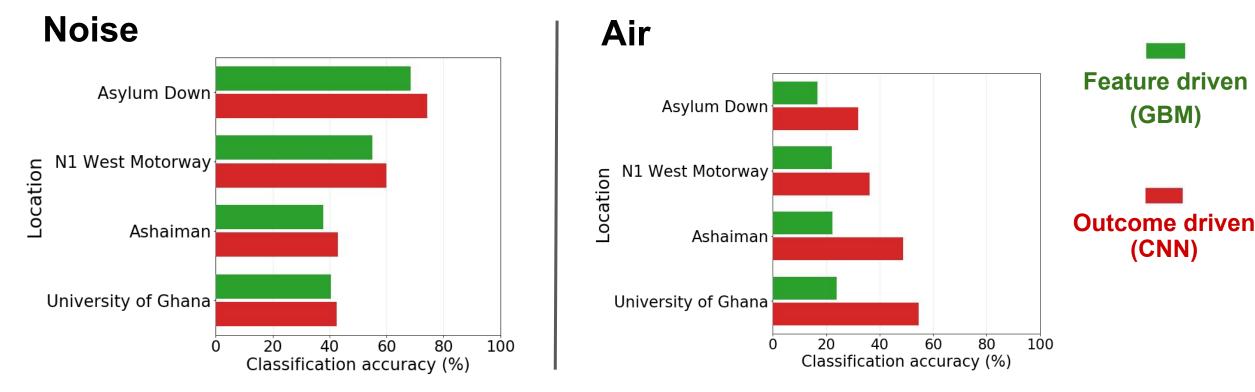
Rotating sites fold construction: 10 folds with mutually exclusive sets of 13-14 sites



135 rotating sites' imagery

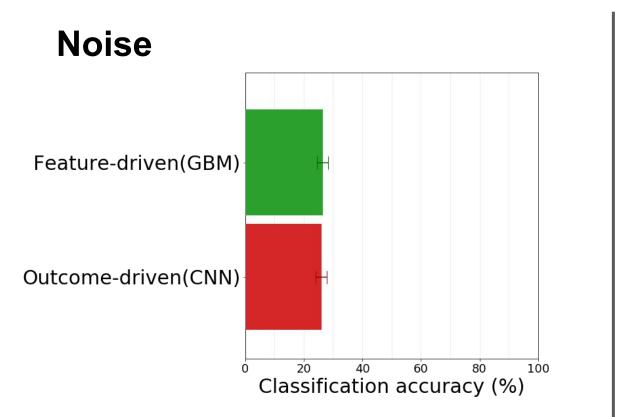
Predicting pollution across time

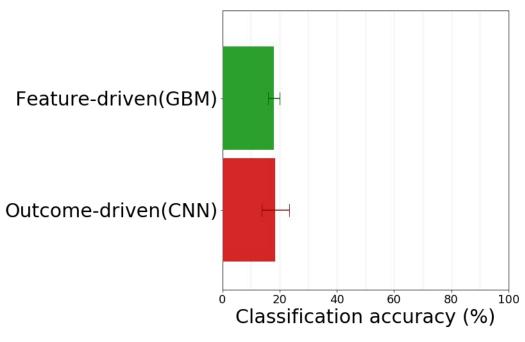
- Outcome driven model is generally more accurate than feature driven model
- Locations with predictable noise have less predictable air pollution



13

- Modelled from 122 locations and evaluated on 13-14 locations
- Predict in unseen locations much harder! (Both approaches do just as well)





Identifying potential sources and factors

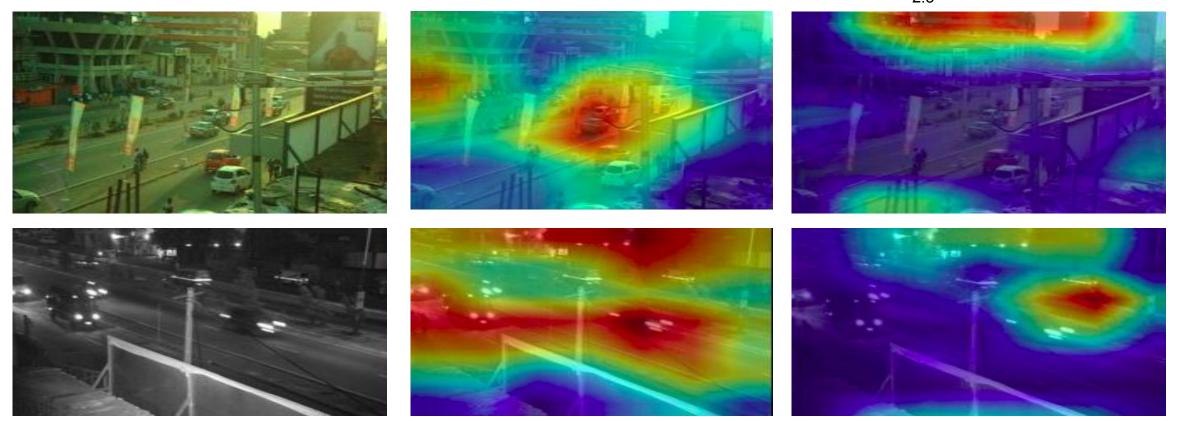
Air (PM_{25}) prediction model

• Noise prediction focuses on specific **features.** e.g. vehicles (also used by **feature-driven** model)

Noise prediction model

• Air pollution prediction associated with changes in visibility. e.g. red skies, haze

Original image



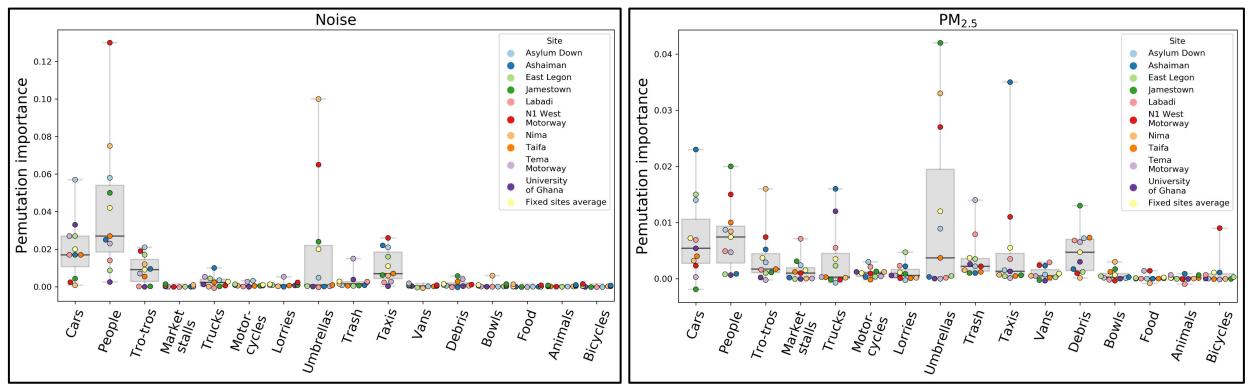
- Images are a rich source of information on urban environmental health
- Advances in computer vision have opened doors
 - Estimating air and noise pollution across space and time.
 - Some promising results for extending reach of estimates within cities.
- Many remaining challenges with complex and unstructured data
 - Representative data collection.
 - Generalisation across space and time new locations and geographics continue to require in situ monitoring data.
 - Model transparency and interpretability
 - How reliable are our models?

BACKUP

The classes for noise were: <=39, 40 to <45, 45 to <50, 50 to <55, 55 to <60, 60 to <65, 65 to <70, 70 to <75, 75 to <80, >=80 dBA. **Intervals of 5 dBA**

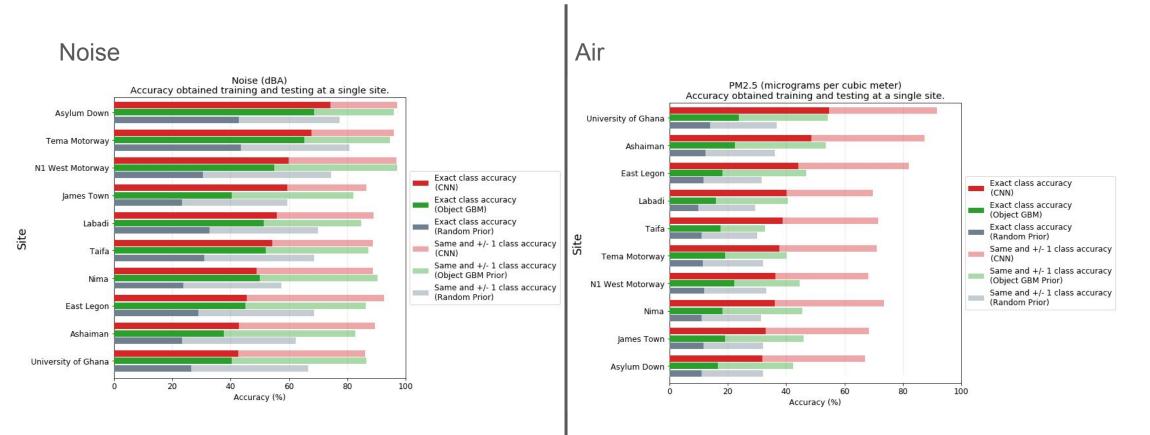
The classes for PM_{2.5} were: 0 to <5, 5 to <10, 10 to <15, 15 to <20, 20 to <25, 25 to <30, 30 to <40, 40 to <50, 50 to <100, 100 to <150, >=150 μ g/m3.

Permutation importance: randomly shuffle each input feature, and measure relative decrease in model performance



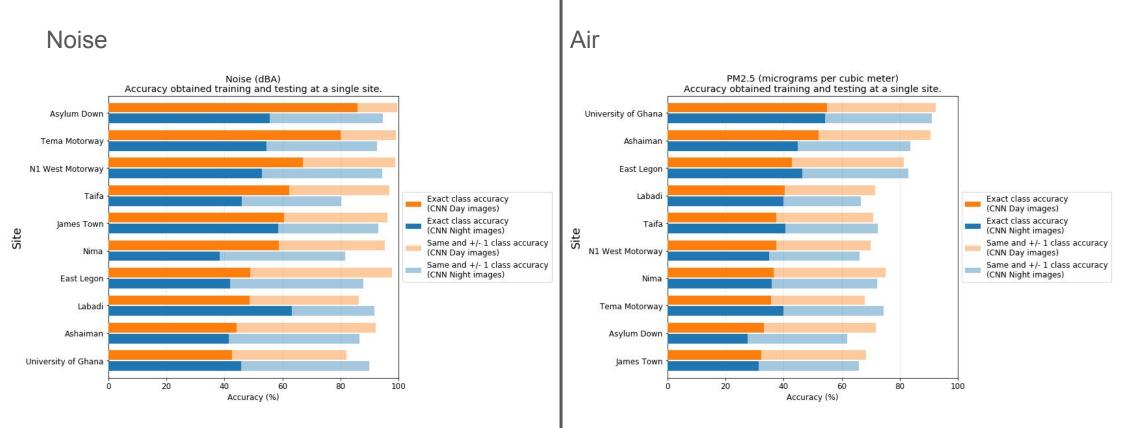
Single (fixed) site, model performance

- Noise prediction models tend to outperform air prediction models.
- Both methods do similarly for noise, and the CNN out-performed the Object-GBM for air.

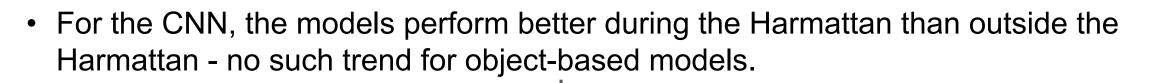


Single (fixed) site, model performance - Day vs Night

- Noise prediction CNN models tend to perform better in the day time (colour images).
- Little difference for air pollution CNN models

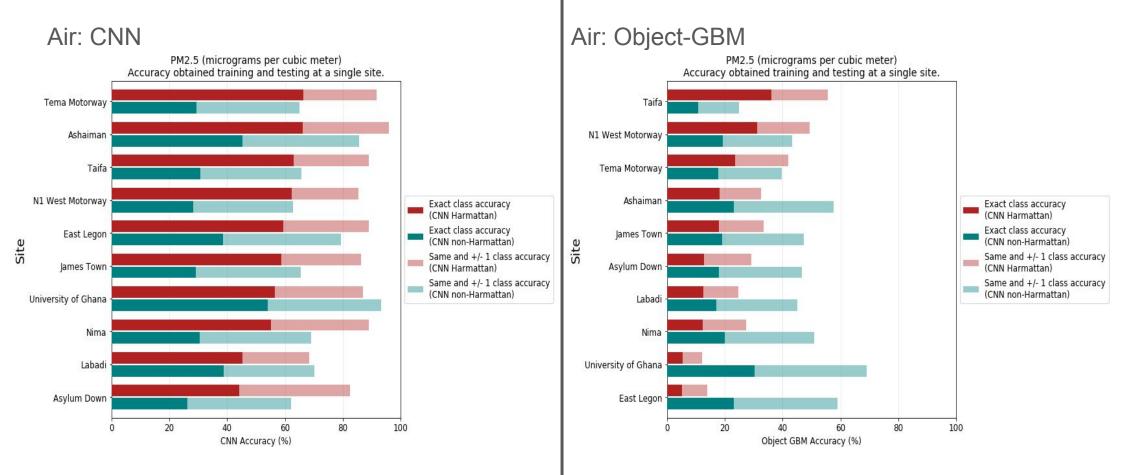


Single (fixed) site, model performance - Harmattan vs non-Harmattan

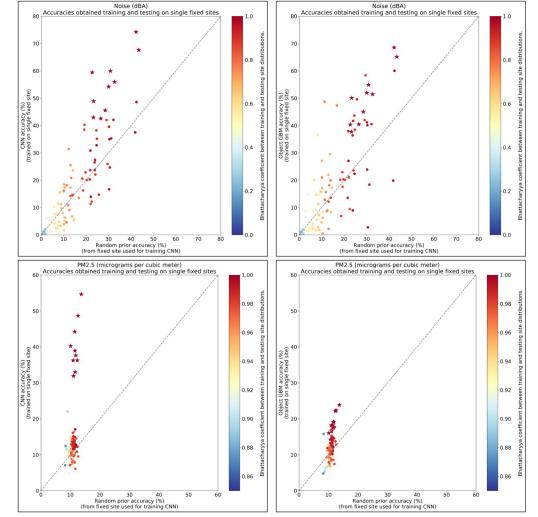


CITIES

QUITABL



Basically, no generalisation, noise models do better than air in at least reaching random prior performance



Multiple (rotating) sites, model performance

- Noise prediction models still tend to outperform air prediction models.
- No relative advantage between models, though all still outperform the random prior.



 Noise prediction CNN models tend to perform better in the day time, despite similar random priors.

