Soft factors, spatial structure and carbon dioxide emission from carrelated commuting in Poland

Dr hab. Prof. UŁ Szymon Marcińczak

University of Łódź (Poland) University of Tartu (Estonia)

Dr hab. Bartosz Bartosiewicz University of Łódź (Poland)

AAG Annual Meeting, Denver 2023 This research was funded by the National Science Centre project UMO-2019/35/B/HS4/00286

Outline

- Factors affecting commuting behavior/patterns
- Setting the scene
- Aims, data and research design
- Results
- Conclusions

Commuting patterns depend on *hard* and *soft* factors (Lin et al. 2015)

- Hard factors:
- urban form
- urban structure
- *Soft* factors:
- residential environment
- individual/household characteristics

Urban structure:

- Restructuring urban regions in the late 20th c. from monocentric to polycentric (multinodal) urban systems
- Multinodal systems may reduce the length and duration of worker's commute (Gordon et al. 1991; Zhao et al. 2011)
- But not all studies confirm this hypothesis (Cervero and Wu 1998; Schwanen et al. 2003; Veneri 2010)

Urban form:

- Population/employment density is the most common indicator
- High employment/population density generally reduces commuting distance/time (Ewing and Cervero 2001, 2010)
- Low density generally leads to poor access to public transport network (Muniz and Lopez 2019) and, thus, to car commuting (Guerra et al. 2018)

Individual/household characteristics and residential environment:

- History, institutional and cultural factors, and economicrelated characteristics of a city/region matter
- Socio-demographic factors age, income, education, gender and household type (household related responsibilities), employment status, and individual preferences - may be more significant than the factors of urban spatial patterns (Hanson 1982)

Setting the scence

Urban structure after socialism:

- <u>Under-urbanization</u> under socialism a substantial increase in the number of commuters from rural to urban areas (Szelenyi 1996)
- Deconcentration has been the main trend in urban and regional dynamics after 1990 (Stanilov and Sykora 2014)
- Polycentric urban development is not the only trend in the evolution of urban regions (Bartosiewicz and Marcińczak 2022).

Setting the scence

2.3.4

Passenger Cars

<u> </u>		billion pkm						%
	1990	1995	2000	2005	2010	2014	2015	CHANGE '14/'15
EU-28		3904.4	4 300.9	4508.4	4625.0	4615.1	4719.4	2.3
BE	89.5	96.4	102.5	102.8	109.4	108.2	107.1	-1.0
BG		25.0	26.9	35.1	46.9	54.0	56.8	5.4
CZ		54.5	63.9	68.6	63.6	66.3	69.7	5.2
DK	47.2	48.4	50.6	49.8	51.7	54.2	56.5	4.3
DE	683.1	815.3	831.3	856.9	887.0	916.4	928.3	1.3
EE		5.1	6.7	9.9	10.1	11.9	12.3	4.0
IE	28.5	31.6	34.6	44.4	48.1	47.2	51.9	10.0
EL	35.0	44.0	63.0	85.0	99.6	96.9	98.3	1.5
ES	174.4	250.4	302.6	337.8	341.6	308.7	317.6	2.9
FR	592.5	641.2	687.7	704.6	695.9	706.9	724.1	2.4
HR		12.5	20.0	24.0	25.7	26.1	26.4	1.3
IT	522.6	614.7	713.9	677.0	698.4	642.9	679.4	5.7
CY		3.4	3.9	4.8	5.9	6.1	6.2	2.4
LV		7.5	11.5	12.1	12.3	12.6	13.5	7.3
LT		16.0	26.0	34.8	32.6	24.3	24.9	2.2
LU	4.0	4.7	5.6	6.3	6.5	7.1	7.3	2.6
HU	47.0	45.4	46.2	49.4	52.6	52.7	54.6	3.6
MT		1.7	1.8	2.0	2.2	2.4	2.5	3.8
NL	137.3	131.4	141.1	148.8	144.2	145.0	139.3	-3.9
AT	55.7	62.2	66.7	70.6	73.5	76.6	78.3	2.3
PL		110.7	130.1	152.3	188.8	197.0	200.6	1.8
PT	40.0	52.5	71.0	85.0	83.7	83.3	84.5	1.4
RO		40.0	51.0	61.0	75.5	85.2	89.9	5.5
SI	13.3	16.3	20.3	22.5	25.6	25.6	26.0	1.4
SK		18.0	23.9	25.8	26.9	27.3	27.5	1.0
FI	51.2	50.0	55.7	61.9	64.7	65.5	66.3	1.2
SE	85.9	87.6	103.7	108.0	108.0	110.3	111.9	1.4
UK	588.0	617.9	638.6	667.2	644.0	654 4	657.6	0.5

Road

PASSENGER CARS

2.6.2

STOCK OF REGISTERED VEHICLES

							1000	
_	1990	1995	2000	2005	2010	2014	2015	CHANGE '14/'15
EU-28	160106	179690	200 245	221 211	240070	249790	254235	1.8
BE	3864	4273	4678	4919	5276	5 5 7 3	5662	1.6
BG	1317	1648	1993	2538	2 6 0 2	3014	3162	4.9
CZ	2410	3043	3439	3959	4496	4833	5115	5.8
DK	1 5 9 0	1679	1854	1965	2164	2 3 3 0	2391	2.6
DE	36772	40 499	39059	40 660	42 302	44 403	45071	1.5
EE	241	383	464	494	553	653	677	3.6
IE	801	998	1333	1684	1899	1966	2007	2.1
EL	1736	2 2 0 5	3 1 9 5	4303	5217	5108	5160	1.0
ES	11996	14212	17449	20250	22147	22 0 30	22356	1.5
FR	23 550	25 100	28060	30100	31300	31800	32 000	0.6
HR	580	711	1125	1 3 8 5	1515	1474	1 500	1.7
IT	27416	30 30 1	32584	34667	36751	37 081	37 351	0.7
CY	179	220	268	355	463	478	488	1.9
LV	283	332	557	742	637	658	679	3.2
LT	493	718	1172	1455	1692	1 2 0 6	1244	3.2
LU	183	229	273	307	337	373	381	2.2
HU	1944	2245	2365	2889	2984	3108	3 1 97	2.9
MT	120	181	189	213	241	267	275	3.3
NL	5 509	5633	6539	7 0 9 2	7736	7 979	8101	1.5
AT	2991	3 5 9 4	4097	4157	4441	4 6 9 5	4748	11
PL	5 261	7517	9991	12339	17240	20 004	20723	3.6
PI	1849	2560	3443	4200	4 4 8 0	4 4 9 6	4538	0.9
RO	1 2 9 2	2197	2778	3 3 6 4	4320	4908	5155	5.0
SI	587	711	866	960	1062	1068	1079	1.0
SK	880	1016	1274	1 304	1669	1949	2035	4.4
FI	1939	1901	2135	2 4 3 0	2877	3 1 95	3 2 5 8	2.0
SE	3 6 0 1	3631	3999	4154	4335	4586	4669	1.8
UK	20722	21951	25067	28326	29334	30557	31214	2.1

Setting the scence

3.2.1 Total Greenhouse Gas (GHG) Emissions (*) MILLION TONNES CO, EQUIVALENT

	1990	1995	2000	2005	2010	2014	2015
EU-28	5716.4	5 381.4	5 270.8	5345.2	4909.5	4 423.7	4451.8
BE	148.8	157.3	154.2	148.7	136.6	118.1	121.6
BG	104.4	75.3	59.6	64.3	60.8	58.0	62.0
CZ	198.5	157.6	150.0	148.6	140.6	127.5	128.8
DK	72.1	80.1	73.1	68.9	65.6	53.5	51.0
DE	1263.0	1135.7	1062.2	1014.9	966.0	928.8	926.5
EE	40.5	20.3	17.4	19.3	21.3	21.2	18.1
IE	57.2	60.9	70.9	72.5	64.0	60.0	62.4
EL	105.6	111.8	128.9	138.9	120.9	102.2	98.6
ES	293.4	335.2	395.8	451.6	369.6	338.3	350.4
FR	555.8	554.6	566.4	569.1	527.7	470.0	474.6
HR	31.7	22.6	25.5	29.6	27.6	23.4	23.9
IT	524.1	536.8	560.9	588.3	514.1	432.5	442.8
CY	6.4	7.9	9.2	10.2	10.4	9.2	9.2
LV	26.4	12.8	10.4	11.5	12.6	11.5	11.6
LT	48.4	22.4	19.7	23.2	20.9	20.1	20.3
LU	13.1	10.6	10.6	14.3	13.5	12.0	11.7
HU	94.4	76.0	74.2	76.6	66.1	58.4	61.6
MT	2.6	2.9	3.0	3.3	3.3	3.3	2.6
NL	226.1	239.2	229.7	225.4	224.5	198.5	206.7
AT	79.7	81.2	82.2	94.6	87.1	78.4	81.0
PL	468.5	439.7	391.4	399.8	408.4	384.7	387.7
PT	61.1	71.7	84.5	88.6	72.1	67.4	72.1
RO	247.1	181.7	140.6	146.8	121.4	116.0	117.8
SI	18.6	18.8	19.2	20.6	19.7	16.7	16.9
SK	74.5	54.5	49.9	51.5	46.7	40.8	41.4
FI	72.3	72.7	71.1	70.9	77.3	61.1	57.5
SE	73.0	75.2	70.7	68.8	66.7	56.1	55.9
UK	809.1	765.8	739.8	724.5	643.9	555.8	536.9

GHG Emissions from Transport 3.2.2 MILLION TONNES CO₂ EQUIVALENT

	INC	LUDING	INTERN/	ATIONAL	BUNKER	RS (*)	
	1990	1995	2000	2005	2010	2014	2015
EU-28	961.4	1034.4	1168.6	1 263.3	1222.3	1 165.2	1 182.9
BE	36.5	38.6	45.6	55.2	55.3	46.5	48.7
BG	7.5	6.2	6.0	8.8	8.8	9.3	10.2
CZ	7.8	9.9	12.5	18.1	18.0	17.8	18.6
DK	15.5	19.0	18.7	18.2	17.6	17.1	17.3
DE	183.0	198.3	208.0	191.5	186.7	191.4	192.4
EE	3.1	1.9	2.1	2.7	3.0	3.4	3.3
IE	6.3	7.8	13.1	16.0	14.3	14.0	14.9
EL	25.4	31.1	33.3	34.0	34.1	25.6	25.9
ES	76.4	87.6	116.4	140.6	131.4	119.6	122.3
FR	137.6	149.0	163.4	165.5	157.9	154.3	155.7
HR	4.5	3.7	4.8	5.9	6.3	6.0	6.3
IT	111.2	124.5	136.2	143.8	131.2	122.3	121.4
CY	2.1	2.6	3.3	3.9	3.8	3.3	3.4
LV	4.8	2.7	2.3	4.2	4.5	4.1	4.3
LT	6.5	3.7	3.6	4.8	5.0	5.1	5.6
LU	3.0	3.9	5.8	8.5	7.8	7.4	7.1
HU	9.4	8.0	9.8	12.8	12.4	11.7	12.8
MT	1.3	2.4	3.2	2.9	5.5	5.0	6.1
NL	68.1	73.3	85.8	97.3	90.8	83.7	82.1
AT	14.9	173	20.6	27.0	24.7	24.2	24.8
PL	22.4	24.3	29.5	37.3	50.3	46.6	49.1
PT	13.0	16.3	22.9	23.5	23.1	21.0	21.5
RO	13.2	9.2	10.3	13.0	14.8	16.5	17.2
SI	2.8	3.9	3.9	4.6	5.4	5.6	5.6
SK	7.0	5.6	5.7	7.7	7.5	6.6	6.9
FI	15.0	13.3	15.3	15.9	15.0	13.3	14.0
SE	23.0	24.7	26.6	29.8	29.4	26.4	26.5
UK	140.1	145.9	160.1	170.4	157.8	157.4	158.7

<u>Aims</u>:

- to investigate the impact of urban form and spatial structure on the direct CO2 emission from car commuting in Poland
- to explore the relationship between individual worker characteristics and CO2 emission

Data:

- Travel Behaviour Sruvey (2015) (10042 cases)
- Central Statistical Office (CSO) (2015)

Research desgin:

- Robust estimates require controlling for the problem of self-selection (the place of residence or transport mode) (Cao et al. 2009, Schwanen et al. 2002)
- We estimate separate models for urban and rural areas
- We control for endogeneity in models predicting CO2 emission from car commuting

<u>Methods</u>:

- The annual equivalent CO2 emission of car trips made by the individual *i* is:
- $CO2eq_i = EqP_z * Dtw_i * Nowt_i$

 EqP_z – emission of equivalency factor per the type of fuel (z) per passenger and per kilometer (grams of CO2eq km-passenger) Dtw_i – distance of a round work trip made by commuter *i* Nowt_i – number of trips per year made by commuter *i*

Methods:

- Linear models (OLS)
- Sample selection models (the Heckman model)
- Robusr sample selection model (Zhelonkin et al. 2016)

Results: urban areas

Selection equation (dependent variable: commuting by car)

Probit	Robust SSM
-1.3160**	-1.2524***
0.04269***	0.0455***
-0.0005***	-0.0005***
0.5817***	0,6024***
1.2910***	1.2827***
0.1525***	0.1434***
-0.2351***	-0.2533***
-0.4291***	-0.4525***
-0.2785***	-0.3013***
-06250***	-0.6808***
-0.0001***	-0.0001***
1.4550**	1.3972**
-1.3790***	-1.3396***
0.1278**	0.1264**
	Probit -1.3160** 0.04269*** -0.0005*** 0.5817*** 1.2910*** 0.1525*** -0.2351*** -0.4291*** -0.4291*** -0.2785*** -0.6250*** -0.0001*** -1.3790*** 0.1278**

Results: urban areas

Outcome equation (dependent variable: logCO2em)

	OLS	Heckman	ML	Robust SSM
constant	11.86***	11.97***	11.99***	11.73***
Age	0.0170'	0.014'	0.0144'	0.0203*
Age ²	-0.0002*	-0.0002*	-0.0002*	-0.0003**
Sex (ref: female)	0.357***	0.3350***	0.3319***	0.3549***
Education level (ref: higher education)				
Secondary education	-0.1313***	-0.1237***	-0.1228***	-0.1275***
Vocational education	-0.0967*	-0.0803'	-0.0780'	-0.1082*
Primary education				-0.1081*
Population density in municipality	-0.0001***	-0.0001***	-0.0001***	-0.0001***
Density of main roads in municipality	-0.0599***	-0.0594***	-0.0594***	-0.0698***
Accessability index (municipality)				
Circularity index of urban region				
Gini index (employment in urban region)	1.1380***	1.1870***	1.1940***	1.2387***
Rank-size indicator (employment in urban region)	-0.0792*	-0.0814*	-0.0817*	-0.0949**
Logarithm of area (urban region)				
IMR		-0.0791		-0.0382
Rho		-0.0841	-0.0956	
R ²	0.0587	0.0589		

Results: rural areas

Selection equation (dependent variable: commuting by car)

	Probit	Robust SSM					
constant	-0.8214'	-0.7189'					
Age							
Age ²							
Sex (ref: female)	0.4542***	0.5682***					
Private car ownership (ref: no car)	1.1729***	1.5302***					
Chiild(ren) in household (ref: no children)	0.1228*	0.1347'					
Education level (ref: higher education)							
Secondary education	-0.6237***	-0.8000***					
Vocational education	-0.8364***	-1.0185***					
Primary education	-0.7475***	-0.8872***					
Employment type (ref: self-employed)							
Population density in municipality		0.0011*					
Density of main roads in municipality	-0.3238***	-0.5553***					
Accessability index (municipality)							
Circularity index of urban region							
Gini index (employment in urban region)	-1.3621**	-1.6295**					
Rank-size indicator (employment in urban region)							
Logarithm of area (urban region)	0.1634'	0.1674'					

Results: rural areas

Outcome equation (dependent variable: logCO2em)

	OLS	Heckman	ML	Robust SSM
constant	13.2366***	13.57***	13.95***	13.55***
Age				
Age ²				
Sex (ref: female)	0.331***	0.2465***	0.1248*	0.2201***
Education level (ref: higher education)				
Secondary education	-0.1129'			
Vocational education	-0.2082**			
Primary education	-0.1962*			
Population density in municipality				-0.0004'
Density of main roads in municipality				
Accessability index (municipality)	0.0117'	0.0121'	0.0132'	0.0109'
Circularity index of urban region				
Gini index (employment in urban region)	1.2551***	1.4850***	1.8112***	1.6481***
Rank-size indicator (employment in urban region)				
Logarithm of area (urban region)	-0.1459*	-0.1688**	-0.1952**	-0.1705**
IMR		-0.4109**		-0.4243**
Rho			-0.8803***	
R ²	0.0477	0.0523		

Conclusions

- Urban systems (intra-urban structure) and individual characteristics significantly affect commuting patterns in Poland
- CO2 emissions are lower in polycentric regions
- Higher concentration of employment brings about higher emissions
- Higher density indeed appears to reduce CO2 emissions from car commuting

Conclusions

- Demographic characteristics and socioeconomic status are important explanatory factors; however, urban strucuture and form appear to have a stronger effect on CO2 emissions
- Not surprisingly, residents of rural areas rely more on the car
- Controlling for sample selection is important

Thank you